
NASA-CR-203448
• . _I,_Z::......

NAS Kernels on the Connection Machine

Russell Carter 1

Report RND-90-005, August 1990

Revised February 1991

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000

NAS Kernels on the Connection Machine

RND-90-005

Russell Carter
Computer Sciences Corporation

NASA Ames Research Center
Moffett Field, CA 94035, USA

Revised February, 1991

Introduction

The NAS Kernel Benchmark Program is a collection of FORTRAN subroutines, or

"kernels", which were chosen to be representative of the computational workload of

the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames

Research Center. Details of the kernels are provided in [1]. The kernels provide

benchmark measures of double precision (64 bit) floating point computation rate

and accuracy and have been run on many different computer systems [2]. The

kernels were developed in FORTRAN 77 and were designed for maximum

performance on serial vector machines. However, as high performance scientific

computing evolves, increasing emphasis has been placed on parallel computer

systems. This report details the implementation and performance of the kernels on

a massively parallel computer system, a Thinking Machines Corporation

Connection Machine 2 (CM) with 32K processors.

Connection Machine Description

The CM system consists of a collection of simple processors, each with its own

memory, all acting under the direction of a conventional computer system called the

front-end. The Connection Machine system installed at NAS has 32K processors.

Each processor has 8K bytes of memory, for a total of 256M bytes of memory.

There are 1024 32 bit floating point units. The front-end is a Sun 4/490 with two

processors (one dedicated to IO) and 128 megabytes of memory running SunOs

4.0.3. The FORTRAN supplied is CM FORTRAN version 0.7.

The CM performs parallel computations at the FORTRAN program level primarily

at the DO loop level. Parallelism in a FORTRAN program is exploited by

expressing paraUelizable loops in proposed FORTRAN 8x array section syntax.

Arrays used in FORTRAN 8x constructions are stored in CM memory, one element

per processor. When the front-end computer executes a CM FORTRAN program,

it performs serial operations on scalar data stored in its own memory, but sends

instructions for array operations to the CM. When the CM receives an instruction,

each processor executes it on its own data. The following code fragments illustrate

thedifferencesin syntaxbetweenthetraditionalFORTRAN77DO loop andthe
FORTRAN 8x arraysectionsyntax.

FORTRAN77DO loopversion:

do i0 i=l,n

a (i) =b (i) *c (i) +d(i) *x

f(i)=cos (a(i))

I0 continue

FORTRAN 8x version:

a (i :n) =b (i :n) *c (i :n) +d(l :n) *x

f(l:n)=cos(a(l:n))

Procedure

The purpose of the project was to perform a port of the kernels to the CM. Work

on the project was initiated by E. Barszcz and L. A. Tanner at NAS. This report

extends and completes their work.

No attempt was made to substitute appropriate parallel algorithms for the serial,

vectorizable algorithms in the kernels. As few changes to the original FORTRAN

source were made as possible. Thus the first step of the port was to convert the

parallelizable FORTRAN 77 DO loops to FORTRAN 8x array section syntax.

Since the Cray FORTRAN compiler cft77 supports the proposed array syntax

extensions, and the compile-link-run cycle is much faster on the NAS Cray Y-MP

than on the CM, the NAS Kernels were f'trst converted to the Cray's version of the

array section syntax. Subsequently the converted kernels were run on one

processor of the Cray Y-MP 8128, and produced the following results:

Table 1

Cray Y-MP FORTRAN 8x

THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM 1.8085E-13 4.1943E+08 1.5825 265.04

CFF'I2D 3.2001E-12 4.9807E+08 11.0693 45.00

CHOLSKY 1.8256E-10 2.2103E+08 4.9587 44.57

BTRIX 6.0622E-12 3.2197E+08 4.4777 71.91

GMTRY 6.5609E- 13 2.2650E+08 3.8344 59.07

EMIT 1.5609E- 13 2.2604E+08 1.3052 173.18

VPENTA 2.3541E-13 2.5943E+08 7.1444 36.31

TOTAL 1.9305E-10 2.1725E+09 34.3724 63.20

2

The ERROR column lists the difference between a single computed value and a
reference value in each kernel. The FP OPS column lists the number of double

precision (64 bit) floating point operations performed in each kernel. The

SECONDS column lists the CPU time used to compute each kernel. No

initialization work is counted toward CPU time. MFLOPS lists millions of floating

point operations per second. The TOTAL row is the sum of each column, except

for the MFLOPS entry, which is the total millions of floating point operations
divided by the total CPU time used.

Several kernels ran significantly slower when expressed in array section syntax.

Comparing output from the unmodified FORTRAN 77 version of the kernels

shows decreases in MFLOP computation rate in the CFFT2D, CHOLSKY,

BTRIX, GMTRY, and VPENTA kernels. The FORTRAN 77 output of a run on

one processor of the Cray Y-MP is provided in Table 2.

Table 2

Cray Y-MP FORTRAN 77

THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM 1.8085E-13 4.1943E+08 1.5705 267.06

CFFI2D 3.2001E-12 4.9807E+08 7.0951 70.20

CHOLSKY 1.8256E-10 2.2103E+08 2.6393 83.75

BTRIX 6.0622E-12 3.2197E+08 2.3717 135.76

GMTRY 6.5609E-13 2.2650E+08 2.0910 108.32

EMIT 1.5609E-13 2.2604E+08 1.2987 174.05

VPENTA 2.3541E-13 2.5943E+08 4.7900 54.16

TOTAL 1.9305E-10 2.1725E+09 21.8563 99.40

Differences in MFLOP rates between the array section syntax version and the

original FORTRAN 77 version occur because the cft77 compiler apparently

generates less efficient code for some loops expressed in the array section syntax.

Conversion of Y-MP 8x version to CM FORTRAN

The Y-MP array section syntax version was then converted to Connection Machine

FORTRAN. With the exception of two kernels discussed below and the MXM

kernel, no modifications were made to the original algorithm. Since general matrix

multiplication is a standard CM FORTRAN library call, the CM FORTRAN library

matrix multiply routine MATMUL was used to perform the matrix multiplications in
the MXM kernel.

3

TransferringtheY-MP FORTRAN 8x versionof thekernelsto theCM was
straightforward.Most loopsexpressedin arraysectionsyntaxranwithout
additionalmodificationon theCM. Programmingissuesthathadto beaddressedin
orderto permitcomputationsto runon theCM stemmedprimarily from thefront-
endcoupledto massivelyparallelback-endarchitectureof theCM system.Array
initializationin thekernelsconsistsof scalar(sequential)assignmentof pseudo-
randomnumbersto theappropriatearrays.Scalarassignmentson theCM are
performedon thefront end;henceall scalararrayinitalizafions wereperformedon
thefront endandexplicitlypassedto theCM. Thisobviatedtheneedfor common
blocks,soarraysdeclaredin commonwereredeclaredaslocal arrayswithin thetest
subroutinesandpassedto thekernelsubroutinesasparameters.Initializationwork
wasnot includedin thetimedsections.

Theamountof timespenton thisprojectwasaboutthreeperson-weeks.

Results

The kernels run very slowly on the CM. In order to obtain results in a reasonable

amount of real time, the number of iterations for each kernel was reduced to the

minimum amount. The number of floating point operations performed decreased

accordingly and is reflected in the total floating point operations column (FP OPS)

in the output. This modification does not affect either accuracy (as shown in the

column labeled ERROR) or MFLOP computation rate. The results of a 32K (all

available processors) CM run using double precision (64 bit) floating point

arithmetic are provided in Table 3.

Table 3

CM FORTRAN 90

THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM 2.8258E-15 4.1943E+06 4.2946 0.976*

CFFT2D 4.8710E-08 4.9807E+06 75.0830 0.066

CHOLSKY 3.0581E- 12 1.1052E+06 29.5347 0.037

BTRIX 4.1941E-13 5.3662E+05 118.9443 0.004

GMTRY 6.9573E-06 1.1325E+08 59.4254 1.905

EMIT 1.0593E-07 2.2604E+07 35.6761 0.633

VPENTA 4.6957E-15 6.4858E+05 24.7714 0.026

TOTAL 7.1119E-06 1.4732E+08 347.7298 0.42

* Performance using library matrix multiplication call MATMUL.

4

TheY-MP 8x versionof theGMTRY, EMIT, andBTRIX kernelsranexceptionally
slowly on theCM. Projectedelapsedrun timesobtainedfrom partialrunsof the
shortenedkernelswereon theorderof severalhours.This is theresultof the
algorithmiccharacteristicsof thesekernels.Thenumberof iterationsof the
parallelizableloopsin thesekernelsrangefrom 5 to 1000. Sincethenumberof
processorscomputingsimultaneouslyisat mostthenumberof thenumberof
paralleliterationsof a loop,themaximumcomputationrateis limitedby thenumber
of iterationsin theloop. A wayof introducinghigherlevelparallelismin these
routinesis to usetheCM FORTRANlibrary subroutinesSPREADandSUM.
Theseroutines,whicharenot availablefor theY-MP, increasethefractionof
parallelizableoperationsbyduplicatingdataacrossprocessors.An examplefrom
EMIT kernelillustratesthis idea. TheY-MP 8xversionof thecodeis givenbelow:

expz(l:nv) = EXP (z(l:nv) * pidp)

expmz(l:nv) = i. / expz(l:nv)

DO 1 1 = i, nb

DO 2 k = i, nwall(1)

expwkl = EXP (wall (k, i)

expmwk = i. / expwkl

sps = 0.

dum3(l:nv) = expz(l:nv)

ps(l:nv) = gamma(l:nv)

& AIMAG(dum3(l:nv)) ** 2

DO 3 i = i, nv

sps = sps + ps(i)

CONT INUE

CONT INUE

CONT INUE

* pidp)

* expmwk - expwkl * expmz(l:nv)

* LOG (REAL(dum3(l:nv)) ** 2 +

+ sig2)

The DO 2 and DO 3 loops are computed sequentially. After converting the code to

CM FORTRAN, redeclaring appropriate scalars as arrays, and incorporating the

SPREAD and SUM library routines, the code becomes:

expz(l:nv, l) = EXP (z(l:nv) * pidp)

expmz(l:nv, l) = i. / expz(l:nv, l)

expz (I :nv, 1 :nw) =SPREAD (expz (i :nv, i) , 2, nw)

expmz (1 :nv, 1 :nw) =SPREAD (expmz (1 :nv, 1) , 2, nw)

gamma (i :nv, 1 :nw) =SPREAD (gamma (i :nv, i) ,2,nw)

DO 1 1 = i, nb

sps=0.

nl=nwall (i)

expwkl(l,l:nl) = EXP (wall(l:nl, l) * pidp)

expmwk(l,l:nl) = i. / expwkl(l,l:nl)

5

expwkl (i :nv, 1 :nl) =

expmwk (i :nv, 1 :nl) =

dum3(l:nv, l:nl) = expz(l:nv, l:nl) *

& expwkl(l:nv, l:nl) * expmz(l:nv, l:nl)

& ps(l:nv, l:nl) = gamma(l:nv, l:nl) *

& LOG (REAL (dum3(l:nv, l:nl)) ** 2 +

& AIMAG(dum3(l:nv, l:nl)) ** 2 + sig2)

sps (I :nl) =SUM (ps (I :nv, 1 :nl) ,dim=l)

CONT INUE

SPREAD (expwkl (I, 1 :nl) , l,nv)

SPREAD (expmwk (i, 1 :nl) , I, nv)

expmwk (i :nv, 1 :nl)

The use of SPREAD and SUM allows the parallel computation of the DO 2 and DO

3 loops. These routines were successfully used in GMTRY and EMIT to reduce

execution time to the amount reported in Table 3. BTRIX, on the other hand, has a

maximum parallel iteration count of 28 and would require much more restructuring

to take advantage of these routines. Execution time for the BTRIX routine was

reduced by computing only the iteration for which the accuracy check was

performed.

Most computational operators, library routines and data assignments appear to work

correctly in double precision real and complex formats. However, inferior accuracy

of the kernels CFFI_D, GMTRY, and EMIT suggests that complex arithmetic is

not performed in double precision.

Two obscure bugs were uncovered during the port. One was a compiler bug that

caused compilation to fail inexplicably for a legal CM FORTRAN construct, the

other was a runtime error that failed nonlocally, i.e., the program gave evidence of

failing at a point in the code that both logically and locationally seemed unrelated to

the actual source of error. Both were resolved in impressively short time by the

Thinking Machines Corporation representative, and were avoided by minor changes
to the source code.

Slowness of the kernels in general can be attributed to the fact that the amount of

available parallelism in the kernels is poorly matched to the architecture of the CM,

and to the slowness of the software computation of 64 bit floating point. This is

best seen by the matrix multiplication kernel MXM. The (presumably optimized)

CM FORTRAN library routine MATMUL was used to obtain the following results

on 32K processors, and is compared to the FORTRAN 77 implementation of MXM

run on single processors of the Cray Y-MP and Cray 2 in Table 4. All values are in
MFLOPS.

6

Problem

Table4

CM CM Y-MP Cray2
32bit 64bit 64bit 64bit

A*B
(256x128)*(128x64)
(512x256)*(256x128)
(1024x512)*(512x256)

(1024x1024)*(1024x512)
(1024x1024)*(1024x1024)

2.22 0.39 268.66 150.44
14.99 1.17 277.40 172.88
115.08 3.51 280.45 168.22
454.36 9.55 280.13 158.43
899.78 17.01 278.78 164.51

Thematrixmuldplicaton with dimensions256x128and128x64is thesamesizeas
thatof theNAS KernelMXM matrixmultiplication. As theamountof pamUelizable
work increases,CM MFLOPcomputationrate increasesaswell. Codeswith
relativelysmallamountsof datasuchastheNASkernelscanbeexpectedto run
poorly on theCM.

Summary

TheNAS Kernelsweresuccessfullyportedto theCM. Theprogramming
environmentandmodelis acceptablyrobustandgeneral.Performanceis poor,in
partdueto thesmallamountof explicitly parallelwork in thestandardNAS
Kernels,andalsobecause64bit computationsarecomputedin software.

Acknowledgment

Theauthorwishesto thankDuaneCarbon,DoreenCheng,JohnBarton,Robert
Bergeron,andDavid Browningfor their constructivecommentson thiswork. The
authoralsowishesto thankKyra Lowther of Thinking Machines Corporation for

her generous and timely assistance and advice with locating and remedying

problems I encountered during this work.

References

[11

[z]

Bailey, David H., and Barton, John T., "The NAS Kernel Benchmark
Program", NASA Technical Memorandum 86711 (August 1985).

Bailey, David H., "NAS Kernel Benchmark Results", First International
Conference on Supercomputing Systems, IEEE Computer Society, 1985,
341 -345.

7

